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ABSTRACT
Advances in vehicle modeling and simulation in recent years

have led to designs that are safer, easier to handle, and less
sensitive to external factors. Yet, the potential of simulation is
adversely impacted by its limited ability to predict vehicle dy-
namics in the presence of uncertainty. A commonly occurring
source of uncertainty in vehicle dynamics is the road-tire friction
interaction, typically represented through a spatially distributed
stochastic friction coefficient. The importance of its variation be-
comes apparent on roads with ice patches, where if the stochas-
tic attributes of the friction coefficient are correctly factored into
real time dynamics simulation, robust control strategies could be
designed to improve transportation safety.

This work concentrates on correctly accounting in the non-
linear dynamics of a car model for the inherent uncertainty in
friction coefficient distribution at the road/tire interface. The
outcome of this effort is the ability to quantify the effect of in-
put uncertainty on a vehicle’s trajectory and the associated es-
calation of risk in driving. By using a space dependent Gaussian

∗Address all correspondence to this author.

process, the statistical representation of the friction coefficient
allows for consistent space dependence of randomness. The ap-
proach proposed allows for the incorporation of noise in the ob-
served data and a nonzero mean for inhomogeneous distribution
of the friction coefficient. Based on the statistical model con-
sidered, consistent friction coefficient sample distributions are
generated over large spatial domains of interest. These samples
are subsequently used to compute and characterize the statis-
tics associated with the dynamics of a nonlinear vehicle model.
The information concerning the state of the road and thus the
friction coefficient is assumed available (measured) at a limited
number of points by some sensing device that has a relatively
homogeneous noise field (satellite picture or ground sensors, for
instance). The methodology proposed can be modified to incor-
porate information that is sensed by each individual car as it
advances along its trajectory.
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INTRODUCTION
During the 1970’s increasing awareness of the available the-

ory of stochastic process, together with the wider availability
of digital computers, brought to automatic engineers a new and
powerful technique for treating the response of vehicles to the
irregular undulations of roads [1]. Over the last decade, stochas-
tic techniques and computing power have been harnessed fur-
ther, allowing for high-fidelity real-time simulations of vehicles
on roads with uncertain conditions. The most common applica-
tion of spatial uncertainty quantification has been in modeling
vehicles under random road excitation. Random ground excita-
tion has been modeled with spatial homogeneous random pro-
cesses, the output of a linear shaping filter to white noise, as
in [2,3]. A stochastic road excitation assumption is used in [4] to
monitor tire conditions and reduce tire vibration. One prevailing
method for addressing spatial randomness is the method of Gaus-
sian processes, which has been employed to model road surfaces
for stationary [5] and also for non-stationary processes, the latter
represented as a series of stationary process [6].

An unexplored, commonly occurring, spatially stochastic
parameter in vehicle dynamics is the road-tire friction interac-
tion. The importance of this variation is exhibited on roads with
ice patches. The physical challenges of low friction coefficients
and control challenges of driver misperception are cited in [7] as
key causes for the escalation of risk in winter weather conditions.

The primary goal of this work is to devise an efficient and
flexible methodology focused on addressing uncertainty in ve-
hicle dynamics simulation; we will use icy road conditions as
our inherently stochastic enviroment for testing and evaluation of
our methodology. To this end, Gaussian processes are proposed
to produce continuous high-fidelity models of icy terrain from
a discrete set of known friction values (attained from satellite
imagery, ground sensors, or information estimated by other vehi-
cles [8, 9]). A vehicle model is simulated on the constructed ter-
rain to a) quantify the effect of ice patches on a vehicle’s trajec-
tory (compared to the deterministic case) and b) to quantify the
escalated risk of spin-out and over-steer. The proposed method-
ology is demonstrated in conjunction with two simulation envi-
ronments. The first one draws on the MATLAB package, which
is used to implement a simplified bicycle model, and the sec-
ond one is the MSC.ADAMS/Car commercial software package,
widely used in industry for vehicle dynamics simulation [10].

PROPOSED METHODOLOGY
In this work, modeling the friction coefficient at the wheel-

ground contact draws on a Gaussian process approach to provide
a consistent space distribution based on information available at
a limited number of locations.

Other approaches for modeling randomness in the road sur-
face or road-tire interaction do exist. One class of past ap-
proaches is based on homogeneous random processes [2, 3].

While these approaches model a large class of problems and may
be quite useful in design and simulation, they are nonetheless
not appropriate for situations where the variation of the road sur-
face has large areas of coherence that are inhomogeneous, even
if they may be stationary in terms of the uncertainty given the
measured surface data. Another class of past approaches is the
one that we call “spectral” Gaussian processes [5]. In these ap-
proaches, the properties of the surface are represented by their
spatial Fourier transform with independent, normally distributed,
coefficients. As a result, the distribution of the respective prop-
erty is also Gaussian at every point in space, which is also the
case for our approach. Nonetheless, our approach, which is based
on an initial specification of the covariance function, has two key
advantages. The first advantage originates in the fact that spectral
Gaussian process approaches cannot easily accommodate rapid
variations in the properties of the surface, which is a well-known
side effect of the Gibbs phenomenon. In the proposed approach,
since both the representation of the Gaussian process and the data
fitting procedure occur in real space, there is far more flexibility
in dealing with such situations (as appear, for example, when
one considers the limits of the road). Such difficulties may con-
ceivably be overcome by spectral methods by using a different
orthogonal basis defined only in the region of interest. However,
the complexity and computational effort to generate such a basis
may be far from trivial, and in fact such an approach has not,
to our knowledge, been demonstrated. The second advantage of
the proposed approach has to do with the fact that covariance
function-based Gaussian process modeling is one of the preva-
lent methods for representing spatial uncertainty [11,12]. There-
fore, road surface data will eventually be provided in a format
compatible with this representation.

An approach that has recently generated major interest in
uncertainty quantification of engineering systems has been the
one of polynomials chaos expansions. While that approach is
extremely flexible, it also requires approximating the state all the
system in a polynomial basis that grows roughly as nd , where n is
the polynomial degree used and d is the dimension of the uncer-
tainty space. Such an approximation is intractable for problems
that are obtained by spatial discretization with uncertainty at each
node, of the type that is treated here.

A key modeling decision is the selection of a covariance
function. Various studies in geo-statistics suggest that the
squared exponential is a representative correlation function [11],
and a variation of that function is will be used herein. Because
the friction coefficients are naturally bounded between two ex-
treme values (that of dry land µd and ice µs, where µd > µs and
are taken from pg.27 of [13]), the quantity modeled will be the
logarithm of a ratio involving the friction coefficient by the Gaus-
sian process. A function f is introduced to provide µ everywhere
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as:

µ = µs +(µd−µs)∗
1

1+ e− f (1)

Therefore,

f =− ln
(

µd−µ
µ−µs

)
∈ (−∞,∞) (2)

Herein, f is assumed to be a field providing values at a n-
node grid through a Gaussian process that is identified based on
a m-node grid of measurement points. Typically, n�m. Consid-
ering the road flat (two-dimensional), at location x = (x1,x2), the
assumption is that f (x) ∼ GP(m(x),k(x,x′)). That is, the field
f (x) is defined as a Gaussian process with mean m(x) and co-
variance function k(x,x′) [14]. A degree one polynomial mean
function is used to account for a non-stationary spatial distribu-
tion in the x1 and x2 directions, while the covariance function is
assumed a squared exponential:

m(x) = a0 +a1x1 +a2x2 (3)

k(x,x′) = exp

(
−
[
(x1− x′1)

αx1

]2/γ

−
[
(x2− x′2)

αx2

]2/γ
)

(4)

The distribution parameters a0,a1,a2,αx1 ,αx2 and γ are computed
from the observed data. By far the most popular technique for
doing that is the one of using the maximum likelihood approach
[14]. In that approach, the likelihood function is written based on
the covariance function Gaussian process representation. Then,
it is maximized using standard optimization techniques. While
the approach is quite laborious, it is also fairly straightforward,
standard and comprehensively described in multiple references,
such as [14, Chapter 5]. In this work, we concentrate on the is-
sues concerning the application of the Gaussian process model
for the representation of the state of the road surface in conjunc-
tion with advanced dynamical simulation tools.

The phase parameter f now remains to be evaluated at all n
nodes of the evaluation grid x∗:

x∗ =

 (x11,x21)
...

(x1n,x2n)

 ∈Rn (5)

If W ∈Rm is the set of observed values, a provision is made for
including noise in this data by means of the parameter σn,

Figure 1. Gaussian processes are used to compute sampling character-
istics on fine grid from deterministic data on sparse grid.

f̄∗ = m(x∗)+k(x∗,x)kW
−1(W−m(x)) ∈Rn (6)

kW = k(x,x)+σ
2
nI ∈Rm×m (7)

COV(f∗) = k(x∗,x∗)−k(x∗,x)kW
−1k(x,x∗) ∈Rn×n (8)

where x is the set of all measured point coordinates and x∗ is the
set of all computed point coordinates.

Finally, samples at the n-node evaluation grid are obtained
by drawing from a normal distribution with mean f̄∗ and covari-
ance matrix COV(f̄∗):

f(x∗)∼ N(f̄∗,COV(f̄∗)) ∈Rn . (9)

For each sample, a cubic spline is used in conjunction with the
generated data to produce friction coefficients outside the n-node
grid. During the simulation, the spline is invoked to evaluate f at
all the road-tire contact points at any time as shown in Figure 2.
The equations of motion are formulated and solved using friction
coefficient input from the constructed spline. The vehicle posi-
tions and velocities are computed for each sample and averaged;
furthermore, variance is computed at each simulation time step.

Of course, at points away from the evaluation grid, the field
function f approximated by splines no longer obeys the Gaus-
sian process model, it is only an approximation of it. It can be
shown, however, that, in the limit of the evaluation grid spacing
going to zero, the trajectories produced by the dynamical simu-
lator converge to the ones that would be obtained if proper Gaus-
sian process sampling would have been employed at the points
required by the integration procedure. This convergence is due
to the fact that almost any sample f surface is smooth [14].

A summary of the overall methodology is presented in Fig-
ure 3. The approach starts with a specification of the variogram

3 Copyright c© 2008 by ASME



Figure 2. A spline interpolant of friction coefficient samples is extracted
from for each Monte Carlo iteration.

model adopted to capture the spatial statistical distribution of
the friction coefficient. Selecting a variogram model compati-
ble with the underlying statistics of the physical process is very
important, particularly so when the number of measurements is
very limited. To this end, a priori knowledge and expert opin-
ion are often relied upon in choosing the spatial variogram type.
When a wealth of data is available, misspecification of the var-
iogram although not desirable is acceptable as asymptotically it
gets corrected by the approach as discussed in [15–17]. When
little is known about the underlying statistics of the physical pro-
cess, empirical guidelines for selecting a variogram are discussed
in [18,19]. In this case, the impact of variogram misspecification
on kriging can be quite significant [20], and adopting a nonpara-
metric variogram estimation technique [21–26], or relying on ex-
pert opinion are two recommended options.

MODELS CONSIDERED
The first model considered is a simple bicycle model imple-

mented in MATLAB. An open-loop step steer angle is used to
negotiate a turn. A high-fidelity car model is used as well. The
vehicle is modeled in MSC.ADAMS/Car and is used to perform
a J-turn maneuver: drive straight up to a certain point, then ap-
ply a ramp steer input to the steering wheel. These models are
presented in more detail in the following sub-sections.

Bicycle Model
The bicycle model, shown in Figure 4, has three degrees of

freedom: longitudinal motion Vx, lateral motion Vy, and yaw Ωz.

Figure 3. Overall methodology. This work concentrates on the last three
stages of the methodology. Data gathering, specification of variogram,
and variogram parameter identification fall outside the scope of this work.

There are three input functions that determine the behavior of the
model: steer angle δ f (t), and the front/rear wheel road adhesion
coefficients µ f and µr, respectively.

Figure 4. Bicycle model used in preliminary research of methodology
[13].

After neglecting roll and asymetry and assuming that no
thrust forces exist, that is the vehicle coasts into the turn, the gov-
erning differential equations for vehicle velocities and positions
are:
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m(V̇x−VyΩz) = −Fy f sinδ f

m(V̇y +VxΩz) = Fyr +Fy f cosδ f (10)
IzΩ̇z = l1Fy f cosδ f − l2Fyr

Ẋ = Vx cosΘz−Vy sinΘz

Ẏ = Vx sinΘz +Vy cosΘz (11)
Θ̇z = Ωz

The geometric parameters for the bicycle were taken from
[27].The constitutive equations for the forces acting on the tires
are provided by [13].

Fy f =

{ µpW f
2tanαc

tanα f α f ≤ αc

µpWf (1− tanαc
2tanα f

) α f > αc
(12)

Fyr =

{
µpWr

2tanαc
tanαr αr ≤ αc

µpWr(1− tanαc
2tanαr

) αr > αc
(13)

Wf and Wr are the front and back tire normal forces, respectively.
α is the respective slip angle for each tire, µp is the respective
peak road adhesion coefficient for each tire, and αc is the critical
slip angle.

Using geometry, the slip angles are related to the state vari-
ables and the steer angle alone:

α f = δ f − arctan
l1Ωz +Vy

Vx
(14)

αr = arctan
l2Ωz−Vy

Vx
(15)

ADAMS Car Model
The second, more sophisticated vehicle model is obtained

through MSC.ADAMS/Car, a full vehicle simulation package
distributed by MSC.Software. The vehicle parameters used were
taken directly from the default MCS.ADAMS/Car library. The

Figure 5. Vehicle model in without chassis shown in ADAMS.

full vehicle model is the integration of several subsystems includ-
ing a rack-and-pinion type steering subsystem, an Ackerman arm
type suspension system, and a flexible chassis. Figure 5 shows
the topology of a vehicle with front and rear suspension, wheels,
and steering subsystems (the chassis is not shown).

The test rig is a special subsystem which conveys user inputs
for steering angle to the model. ADAMS/View variables called
‘Communicators’ are used to communicate between the subsys-
tems.

Because load transfer through the tires to the ground is es-
sential in predicting vehicle travel on ice, a sophisticated and ro-
bust tire model, FTire (Flexible Ring Tire, [28]) is employed in
the simulation. The tire ring is numerically approximated by a fi-
nite number of discrete masses called belt elements coupled with
their direct neighbors by stiff springs with in- and out-of-plane
bending stiffnesses. The method is summarized by the schematic
in Figure 6.

Figure 6. FTire modeling approach.

The driver used in the ADAMS/Car simulation is also open-
loop. The car starts at the grid origin with an initial velocity,
is allowed to coast in a straight line for 0.5 seconds, and then a
fourty degree per second ramp function is imposed on the steer-
ing wheel for the duration of the simulation to simulate a left
hand turn.

To represent the road in ADAMS/Car, a custom 3D road file
was created. The road file is a flat, rectangular surface tessel-
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lated with identical right triangles. The legs of the right triangles
have a length of one meter matching the resolution of the com-
puted grid x∗; thus, the coordinates of the Gaussian processes
computed grid match the nodal coordinates of the ADAMS/Car
road file. The friction coefficient of each triangle is the geomet-
ric average of the friction coefficients at the respective triangle
vertices. A unique road file is created for each Monte Carlo it-
eration. Finally, the FTire model previously discussed computes
the iterfacial friction coefficients at each step in simulation and
uses the input to determine the vehicle dynamics.

Figure 7. Car model and tessellated road surface in the ADAMS envi-
ronment.

NUMERICAL EXPERIMENTS
Numerical experiments have been conducted and are pre-

sented to 1) show that average vehicle dynamics are predicted
through our methodology, 2) verify that dynamics trends pro-
duced through full vehicle simulation in different conditions are
congruous with expectations, and 3) illustrate the insights pro-
vided by the stochastic analysis enabled by the proposed method-
ology. MSC.ADAMS/Car results are presented to illustrate the
readiness of this methodology for industry applications. Finally,
some simulation performance metrics are given to understand the
potential of this methodology for real-time simulation.

Ice Models
The Gaussian process based approach outlined is used to

create a set of grids G, where each grid has a distribution reflec-
tive of the observed ice distribution. That is, the grids in G are
distinct but consistent in that they share the same spatial distribu-
tion characteristics (with some noise associated with the friction
measurement devices). Each grid in G is subsequently used for
a Monte Carlo analysis, and it should have between 100-1000

nodes to attain accuracy yet maintain efficiency. Three different
grids from G are shown in Figure 8; note that the grids are unique
but possess comparable amplitudes and spatial variations.

Figure 8. Phase parameter grids created from the same set of observed
data.

The key distribution characteristics extracted from the data
are the spatial variances, or literally mean patch length (αx1 and
αx2 in Eq. 4.). Rapid changes in friction coefficients result in a
lateral force unbalance between the front and back tires on a ve-
hicle resulting in understeer or oversteer [27]. The grids shown
in Figure 9 are from two different sets of observed data: the top
plot from a mean patch length of one meter, and the bottom plot
from a mean patch length of three meters. These grids demon-
strate the sensitivity of the methodology to spatial variance.

As indicated earlier, in order to account for the bi-extremal
nature of the friction coefficient, a phase parameter f - the log-
arithm of a ratio involving the friction coefficient - is used. The
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Figure 9. Phase parameter grids created from data sets with mean patch
lengths one meter (top) and three meters (bottom).

Gaussian process is exercised on the phase parameter distribu-
tion creating a phase parameter grid which is subsequently trans-
formed to a friction coefficient grid. Figure 10 shows a realiza-
tion of f on a grid, and the corresponding realization of µ on the
same grid.

The grids used in the following simulations were produced
from randomly generated data assuming the constants from Eqs.
3 and 4: a0=a1=a2=0,γ=1, and σn=.15. Different mean patch
lengths, αx1 and αx2 , were used in experimentation and are stated
for individual tests as mean patch lengths.

Bicycle Simulation
The bicycle dynamics were investigated in MATLAB, and

the following simulation outcomes were monitored: i) yaw ve-
locity, to gauge spin-out and instability, and ii) global position, to
gauge deviation from the desired path as a product of slip, over-
steer, or understeer. Simulations were first run with deterministic
conditions, and Figures 11 and 12 show the friction input to each
bicycle tires and the yaw velocity output as functions of time, re-
spectively. The greatest instabilities occur during rapid friction
changes; the high yaw rates are reached when the front steering
tire has more traction than the rear tire (particularly between 13-
14 seconds in simulation time).

Gaussian processes were implemented and simulations were
run for several vehicle conditions including a variety of speed

Figure 10. Transformation from the phase parameter grid (top) to the
friction coefficient grid (bottom).

and steer angles. Different data sets were used to represent road
conditions. The simulation results shown in Figs. 13 and 14
are for high and low ice densities, respectively. Several inter-
esting similarities exist between the two simulations and across
the other simulations conducted. First, the average response (dy-
namics) of the vehicle is quite far from the constant friction case;
this disparity results in deviation from the desired travel path and
makes navigation more difficult. Second, as shown in Figure 15,
the uncertainty in the response tends to increase in time, or with
distance traveled. This is an illustration of the danger of long
turns if the driver is not vigilant at the wheel. As the driver pro-
gresses around the turn, the risk of instability increases. Third,
the uncertainty of the vehicle dynamics is varying in space, as
seen in Figure 15. We have noticed that deep local minima in the
yaw uncertainty correspond to passing near a known data point
as verified by comparing the global position at these time itera-
tions with the observed data coordinates. That is perhaps to be
expected, though the depth of some of those minima was surpris-
ing to us given that for dynamical systems the uncertainty tends
to grow fairly steadily in time. Whether higher certainty of a
surface patch state can be exploited in a control procedure is an
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Figure 11. Deterministic simulation: friction coefficient input.

Figure 12. Deterministic simulation: resulting vehicle dynamics.

interesting topic for future research.
Finally, an experiment was set up to validate the predictive

capability of the methodology. The original random set of fric-
tion coefficients was amended to introduce a strip of abrupt ice
(low friction coefficients) approximately two seconds into the ve-
hicle’s travel. The result of the simulation is shown in Figure 16;
the constant friction simulation would have resulted in a yaw ve-
locity of approximately 0.2 but it is not shown for the sake of
clarity. It is clear that the Gaussian process accounts for the ice
strip as nearly all Monte Carlo iterations diverge drastically from
the constant friction dynamics. The resulting average indicates
that the driver will experience an uncomfortable change in yaw
velocity and should enter the turn at a lower speed. Incidentally,
the drop in yaw around 3.5 seconds was not the result of a man-

Figure 13. Bicycle simulation: one meter mean patch length, one degree
steer angle, 200 Monte Carlo iterations.

Figure 14. Bicycle simulation: three meter mean patch length, one de-
gree steer angle, 200 Monte Carlo iterations.

ual ice insertion, but rather was the result of a coincidental low
friction coefficient grouping generated randomly.

ADAMS Car Simulation
To demonstrate the propensity of our methodology for

industry applications, we introduced our ice model into
MSC.ADAMS/Car. The car model used considers several ve-
hicle subsystems and inter-system interactions to produce very
high-fidelity results as explained in the Models Considered sec-
tion. The results shown in in Figs. 17 and 18 are for the simula-
tion of a car executing a left turn on an icy road. The observed
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Figure 15. Dynamical uncertainty as a function of time: one meter patch
length, one degree steer angle, 200 Monte Carlo iterations.

Figure 16. Gaussian process simulation with implanted ice strip: three
meter mean patch length, one degree steer angle, 200 Monte Carlo iter-
ations.

friction data for the road was generated randomly and then ma-
nipulated to introduce a strip of ice expectedly two seconds into
the vehicle’s travel. The Gaussian process results in Figure 17
possess the same three characteristics discussed in the Bicycle
model results: i) divergence from the constant friction case, ii)
proliferation of uncertainty with time, and iii) alternating uncer-
tainty depending on proximity to observed data coordinates. The
paths of travel shown in Figure 18 demonstrate both the accuracy
and usefulness of our methodology. The divergence from the
desired turn is the result of the strip of ice in the road and possi-
bly other smaller patches accumulated in the randomly generated
data. Quantifying this type of divergence from path is essential
to driver safety.

Figure 17. Yaw velocity vs. time for ADAMS ramp steer simulation: three
meter mean patch length, forty degree/second ramp steer, 5 Monte Carlo
iterations.

Figure 18. Path of travel for ADAMS ramp steer simulation: three me-
ter mean patch length, fourty degree/second ramp steer, 5 Monte Carlo
iterations.

Diagnostics
For this methodology to be useful in an industry setting, it

has to produce results fast and reliably. To understand the run-
time characteristics of the simulation processes, the duration of
generating a realization x∗ was monitored for i) different simu-
lation times (Figure 19), ii) different evaluation grid (x∗) resolu-
tions (Figure 20), and iii) different sample grid ((x) resolutions
(Figure 21). The results should be considered qualitatively be-
cause of the diversity in computing systems across industry. We
see that the most influential variable to total runtime is length
of the maneuver. As the maneuver gets longer, it requires that
the surveyed and computed space increase, increasing the dimen-
sions of the matrices involved in computation (see Eqs. 6, 7 and
8). This means that runtime increases dramatically. Real time
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simulation can be achieved for short periods (5-10 second long
maneuvers), but the current methodology proves to be inadequate
for longer simulations.

Figure 19. Runtime and largest matrix size as a function of simulation
time.

The plots for runtime vs. grid size demonstrate that the run
time bottle-neck occurs with finer (x∗) resolutions but not finer
(x) resolutions. This implies that one must be careful when se-
lecting evaluation grid sizes; a balance should be found between
run time and accuracy. This represents the topic of ongoing re-
search.

Figure 20. Runtime as a function of evaluation grid (x∗) size.

CONCLUSIONS AND FUTURE WORK
This paper outlines a framework for uncertainty quantifica-

tion in vehicle dynamics simulation. The methodology draws on
a Gaussian Process model and maximum likelihood estimation
to capture in a consistent way uncertainty that enters the dynam-
ics of a complex vehicle model represented in ADAMS. Unlike

Figure 21. Runtime as a function of sample grid (x) size.

other approaches such as, for instance, Galerkin-based polyno-
mial chaos, the proposed framework enables a black box setup in
which the software package used to solve for the dynamics (time
evolution) of the mechanical system requires no modification. In
addition, the representation of the model is far less complex com-
pared to the polynomials chaos expansions, of either Galerkin
and co-location types. We use a covariance function-based Gaus-
sian process modeling approach. It has the advantage of being
more flexible than previous, spectral-based Gaussian process ap-
proaches, as well as being one of the prevalent approaches in
geostatistics which makes it likely that it will be easy to use in
conjunction with emerging spatial database technology. Insofar
simulation, once the Gaussian process model over the road sur-
face is obtained, the methodology relies on a Monte Carlo step
that generates the information required to produce the vehicle
dynamics statistics of interest.

Several steps have not been discussed herein but are cur-
rently being addressed in ongoing projects. First, work is under-
way to extend the Gaussian Process based uncertainty model to
other classes of models, including nonstationary models. Since
in kriging the choice of weights is completely determined by the
choice of the variogram model, it is particularly important for
handling spatial uncertainty (road/tire friction coefficients, road
elevation) to look at other models beyond Gaussian processes.
Since a Gaussian process approach is guaranteed to work pro-
vided the amount of measured data is large, another question of
interest is how to (a) handle effectively large sets of measure-
ments, and (b) how to use consistently and update periodically
subsets of data to handle only subregions of interest. The latter
would allow one to handle smaller regions of data that are sur-
rounding the vehicle as it moves on a road. Finally, the methodol-
ogy presented was illustrated for an application where the source
of uncertainty is provided by the road/tire friction coefficient. It
remains to investigate how road profile uncertainty reflects in the
overall vehicle dynamics. Such an undertaking critically depends
on the quality of the tire models used in the vehicle simulation.
However, the FTire model relied upon in this work provides a

10 Copyright c© 2008 by ASME



level of fidelity for fully three dimensional simulation that makes
terrain-uncertainty type investigation possible and most likely
very insightful.
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